Resources and Guidance for Steel Bridge Design

SteelDay High Steel Structures October 4, 2013

> Bill McEleney Director, NSBA mceleney@steelbridges.org

Steel: The Bridge Material of Choice National Steel Bridge Alliance a division of the American Steel of Construction

www.steelbridges.org

National Steel Bridge Alliance

NSBA Activities

3 | www.steelbridges.org

National Steel Bridge Alliance

NSBA Activities

 Supporting Designers and Owners throughout the Bridge Lifecycle

Material Availability and Guidelines

Structural Shapes and Plate

Structural Shape Availability

Structural Shape Availability

- ASTM A992; ASTM A709, Grade 50S
 - Minimum Yield = 50 ksi
 - No HPS

• Maximums

Producer**	Maximum Depth (in)	Length (ft)
Nucor-Yamato Steel	44	
Gerdau Ameristeel	36	120*
Steel Dynamics	36	

* Maximum length for some beam sizes may be shorter.

** These mills account for over 90% of all wide flange shapes produced in the United States.

- CONTRACT NON-
- Rolled beam generally more economical
- Except with hard curve or camber
- Availability dependent on rolling schedules

STEEL						It's Ou					
IOME CUSTOMER LOGIN RICE LIST		14/o wii	Our	Goal is to Take Care	Of Our Customers.						
CHED RDER BUDDY	Nucor-Y	′amat	o Proposed	d Roll/Cast	Schedule *	ISO 9001:2	2008 Regist	ered * July	27, 2011		
RODUCT LIST	Week Beginning		24-Jul	31-Jul	7-Aug	14-Aug	21-Aug	28-Aug	4-Sep	11-Sep	
URCHARGE	NYS Fiscal Month		July	Aug	Aug	Aug	Aug	Sep	Sep	Sep	
RELATED LINKS	NYS Fiscal Week		30	31	32	33	34	35	36	37	
IEWS ARCHIVE	Wide Flange Sections	Prod. Mill	roll wk - cast date	Approximate Next Roll Week							
	W44x16x230-335	2	33 Cast							shutdown	10/16-10/23 Wks
	W40x16x199x431	2	33 Cast							shutdown	10/16-10/23 Wks
	W40x12x149-327	2	33 Cast							shutdown	10/23-10/30 Wks
	W36x16.5x231-441	2	33 Cast	33 Cast				35 O		shutdown	10/23-10/30 Wks
	W36x12x135-256	2		33 Cast		34 8/2		35 O		shutdown	10/2-10/9 Wks
		-									

Mill Plate Availability

• Plate Availability Maximums

Producer	Maximum Thickness (in)	Maximum Width (in)
Arcelor-Mittal	4	195
Evraz	4	152
Nucor Steel	3	123
SSAB	3	120

* Approximately 700,000 tons of plate used annually for construction projects in the United States.

Mill Plate Availability

• Composite Mill Plate Tables

Plate Availability	/ Chart: Mi	nimum Co	mposite						
	Plate Width								
Plate Thickness	72"	78"	84"	90"	96"	102"	108"	114"	120"
3/8"	972	972	972	972	972	800	972	972	750
1/2"	972	972	972	972	972	972	972	680	680
9/16"	972	972	972	972	972	972	972	680	680
5/8"	972	972	972	972	972	960	960	680	680
3/4"	1,100	1,100	1,100	1,100	1,100	1,030	980	680	680
7/8"	1,100	1,100	1,100	1,100	1,100	1,030	980	680	680
1"	1,100	1,100	1,100	1,058	992	933	882	680	680
1-1/4"	1,100	994	907	846	793	747	705	668	635
1-1/2"	1,077	828	756	705	661	622	588	557	529
1-3/4"	924	710	648	604	567	533	504	477	453
2"	808	621	567	529	496	467	441	418	397
2-1/4"	718	552	504	470	441	415	392	371	353
2-1/2"	646	110	453	423	397	373	353	334	317
2-3/4"	588	452	412	385	361	339	321	304	288
3"	539	414	378	353	331	311	294	278	264

* A709-50 and A709-50W (Non-FC) Availability only.

** Refer to September 2011 issue of Modern Steel Construction Magazine.

Mill Plate Availability

Thickness Increments

- 1/8" for plate up to 2¹/₂" thick
- 1/4" for plate over 2¹/₂" thick

Width Preferences

- Fabricators prefer 72" and 96" widths
- Cost increases with width

Girder Proportioning

Design and Shipping Considerations

Design Considerations

• Usable Plate Area

Flange Plate

Web Plate (Haunched)

Design Considerations

- Usable Mill Plate Area
 - Web Plate 'loss'
 - Width: 1" 4"
 - Length: 1" 6"
 - Material loss will increase if web is haunched or cambered
 - Flange Plate 'loss'
 - Width: 1" 4" total plus an additional 1/4" per burn
 - Length: 1"- 6"
 - A fabricator may choose to increase flange widths specified by the Engineer from 1/4" - 3/8"
 - Can vary from fabricator to fabricator and can be dependent on their capabilities and equipment

Proportioning – Web

• AASHTO Web Thickness Minimum (Art. 6.10.2.1)

Without Longitudinal Stiffeners	$\frac{D}{t_w} \le 150$
With Longitudinal Stiffeners	$\frac{D}{t_w} \le 300$

• Industry Preferred Web Thickness Minimum = $\frac{1}{2}$ "

Proportioning – Flanges

• AASHTO Limits for Flanges (Art. 6.10.2.2)

• Industry Preferred Flange Dimensions $b_f \ge 12''; t_f \ge \frac{3}{4}''$

- Flange transitions (@ welded shop splices):
 - Optimal ordered plate lengths usually \leq 80 feet
 - Limit number of different plate thicknesses used for a given project
 - Avoid changing flange width at a welded shop splice
 - Reference Collaboration Constructability document to evaluate introduction of shop splices – two or fewer in a typical field section
 - Reduce flange thickness by no more than one-half the thickness of the thicker plate at shop splices

Field-Section Lengths

- Field sections: Girder sections fabricated and shipped to the bridge site
 - Shipping and handling concerns are important and can affect field section lengths selected in design
 - Curved members can require additional field splices to reduce size of shipping piece

Field-Section Lengths I-Girders

- Shipment by truck is the most common means
 - 175 ft. Possible, 80 ft. Comfortable
 - 100 Tons Maximum, 40 Tons No Permit
 - 16 ft. Width Maximum
 - 10 ft. Height

NSBA Steel Bridge Suite

Complete Solution for Steel Bridge Analysis and Design

Suite Overview

- Service and the service of the servi
- Steel Bridge Design & Analysis Software
 - LRFD Simon
 - NSBA Bolted Splice

Suite Overview

- Steel Bridge Design & Analysis Reference Library
 - Steel Bridge Design Handbook.
 - AASHTO/NSBA Collaboration Standards.

Suite Installation

www.steelbridges.org/softwareregistration

- LRFD Simon
- NSBA Bridge Splice
- Steel Bridge References

LRFD Simon

Software Solution for Steel Girder Analysis and Design

What is LRFD Simon?

- Preliminary Analysis and Design Program
 - Line Girder Analysis
 - Plate Girder and Box Girders
 - Linear and Parabolic Haunch
 - AASHTO LRFD Specification 5th Edition

- STATE OF THE PARTY OF THE PARTY
- Simple span or up to 12 continuous spans
- 20 nodes per span
- 1/10th point influence lines
- Partial or full-length dead loads
- AASHTO or user-defined live loads
- Transversely stiffened webs with or without longitudinal stiffeners or unstiffened webs
- Bearing stiffeners
- Parabolic or linear web haunches
- Homogenous or hybrid cross-sections

Optimization Methods

- **Second Provide And Provide An**
- Incremental design changes to achieve convergence to satisfactory solution.

Product Tour

Contraction of the second seco

- 34 Delivered Examples
 - 1, 2, 3 and 4 Span Configurations
 - Plate Girder and Box Girder

Organize	 My Documents ► NSBA Steel Share with 	Bridge Suite → Simo	IG12.DAT - Notepad File Edit Format View Help &GENERALINPUT TITL1 = "SAMPLE FILE 2 - IG12.IN" TITL2 = "LRFD, COMPOSITE, HL93 LOADING" TITL3 = "204' SIMPLE SPAN" PRTDET = T, CONCUP = 0.0000000	
	Image: Simon Models Organize Share with ▼ Image: My Documents Image: Adobe Im	Examples > 1 Span New folder Plate Girde Name IG11.D/ IG12.D/ IG13.D/ IG15.D/ IG16.D/	CONCOR = 0.9000000 ; SCAN = 0.1000000 ; PRINTV = -1.000000 ; DISTUD = 0.000000E+00, PLTHK = 4.000000 ; YSIS = 36.00000 ; YSIS = 36.00000 ; TRAFLN = 6.000000 ; DIS_BOX = F, FLMINT = 0.750000 ; IS_BOX = F, TOPRAT = 1.015000 , NPAINT = 1.015000 , A PAINT = 1, DPT = 494.0000 , 0.000000E+00, 544.0000 , 2*0.000000E+00 , A FABFAC = 1.790000 , 2.080000 , 4.030000 , 3.660000 , 4.330000 , ISPANS = 1, ESOEC = 9.000000 , GHAUNCH = 2.500000 ; COMPDL = 328.0000 ; A PEDESTRIAN = 0.0000000E+00, A FWS = 100.0000 ;	
	 NSBA NSBA Steel Bridge Suite OneNote Notebooks Outlook Files 			
31 ww	6 items w.steelbridges.org		National Steel Br	idge Alliance

Product Tour

• Workflow

S Presentation_1.dat - LRFD Simon	
File Analyze Help	
LRFD Simon Model General Properties Distribution Factors Material Properties Loads User Defined Design Vehicle Properties Transverse Stiffener Properties Shear Stud Properties	LRFD_SIMON Version 10.1.1.4 (TEST) 2012-04-18 07:54
 Span Information Span 1 Span 2 Span 3 Cross Section Span 1 Span 2 	Venicie ibrary. IVSBA_venicie_Data.txt Program library. NSBA_simon_library_data.txt Agency library. NSBA_library_data.txt Job Name: NSBA Example #1
Span 3 Costs Material Fabrication Result Controls Results	Project Name: NASCC Design Example - Analysis Model Description: 3 Span Continuous Straight I Girder Check Run - NSBA Example #1 3 Span Continuous I girder EXTERIOR GIRDER
I	LICENSEE: ID# U0360 Note: License expires on 2012-Aug-01 (in 0106 days). National Steel Bridge Alliance - Temporary One East Wacker Drive Chicago IL 60601 United States
Ready	TABLE OF CONTENTS

Product Tour

• XML Results

S 1626 DAT - LRED Simon

File Analyze Help

🖥 🖶 😁 📫 📾 💿 💩 🍳 🙆

National Steel Bridge Alliance

NSBA Bolted Splice

Software Solution for Splice Analysis and Design

- Analysis and design of bolted field splices.
 - Design mode sizes and optimizes the splice plates and bolts
 - Analysis mode determines the adequacy of given splice plates and bolts
 - Can Be Used to Verify or Modify Existing Designs
- AASHTO LRFD Specification 6th Edition

Moment and Shear at Splice

Loading...

AASHTO LRFD Distributed, Unfactored Loads at the Splice Centerline	Moment (K-ft)	Shear (Kip)
Dead Load acting on Girder BEFORE Deck Hardening DC1	-51.8	-60.8
Dead Load acting on Girder During Deck Casting or Placing DCO	0.0	0.0
Construction Loads: equipments, falsework,temporary supports CL	0.0	0.0
Superimposed Additional Dead Load AFTER Deck Hardening DC2	15.5	-8.7
Future Wearing Surface Load DW	18.8	-10.6
Positive Live Load including Impact LL++ I	1307.8	14.5
Negative Live Load including Impact LL ⁻ + I	-953.3	-91.1
Positive Fatigue Load (include 15% dynamic load allowance) LL++ I	394.3	5.0
Negative Fatigue Load (include 15% dynamic load allowance) LL ⁻ + I	-284.0	-33.4

Positive Convention for Distributed, Unfactored Loads at the Splice Centerline

Input of Girder Cross Section

Girder Properties...

Left Girder	Right Girder	
Flange Steel M270 Gr50 💌 Web Steel M270 Gr50 💌	M270 Gr50	Left Right
Top Flange Thickness0.75inTop Flange Width14.0inBottom Flange Thickness0.875inBottom Flange Width14.0inWeb Thickness0.5inWeb Depth54.0in	1.25 in 14.0 in 1.375 in 14.0 in 0.5 in 54.0 in	• • • • Slab•
Shear Strength, Vn ^{305.64} Kip	305.64 Kip	< <u>B</u> ack N <u>ext</u> > Save E <u>x</u> it

Riaht

Slab

TMinimum

Bolt.

< Back Execute

Save

Exit

Clearance to

nearest Web

l eft

Cross Section

in

ksi

ksi

in.

ft

Near Interior Support

C Elsewhere

Connection and Deck Details

Additional Properties...

Solution

NSBA SPLICE Design Summary...

*e*SPAN 140

Web Based Design Solution for Short Span Steel Bridge

eSPAN140 Overview

• Goal

- Economically competitive
- Expedite and Economize the Design Process
- Simple Repetitive Details and Member Sizes
- Bridge Parameters
- Span Lengths: 40 ft to 140 ft (in 5' increments)
 - 40' to 100' rolled beam
 - 80' to 140' plate girder
- Girder Spacing: 6 ft, 7.5 ft, 9 ft and 10.5 ft.
- Homogeneous and hybrid plate girders with limited plate sizes
- Limited depth and lightest weight rolled sections
- Selective Cross-Frame Placement & Design

eSPAN140 Input

• Step 1: Project Information

Project Name*	∖ € Bearing	\
Sample Bridge	-20°to +20°	-20°to +
City/County*	<u>↓</u> <u>\</u> ,,	· · · /
Morgantown	STA+	STA
State/Province*	STA & PGL	
West Virginia	ider s	
Roadway Name		
Main Street	Int. Stiffener	,
Bridge Span Length* 🕢	Diaphragm Span I	Length
82 4 Feet Inches		
Next > <u>Return to Projects</u>		

eSPAN140 Input

• Step 2: Project Details (general dimensions)

2	
Roadwa	v Width* 🔞
30	0
Feet	Inches
Individua 1	I Parapet Width 🔞
Individua 1 Feet	I Parapet Width 3 Inches
Individua 1 Feet Individua	I Parapet Width 3 Inches I Deck Overhang Width
Individua 1 Feet Individua 3	I Parapet Width 3 Inches I Deck Overhang Width 0

eSPAN140 Results

• Typical Girder and Bridge Details

span (L) - ft			PLATE GIRD	ER SIZE						SHEAR CONNECTOR MAX. SPAC-		
	TOP FLANGE	BOTTOM FLANGE (F)		BOTTOM FLANGE (G)			DIAPHRAGM	SHEAR STIFFENERS		ING		INDIVIDUAL GIRDER
	- in	PLATE - in	LENGTH - Ft	PLATE - in	LENGTH - Ft	WEB PLATE- in	SPACING (C) - π	X (NO. REQ'd)	Y - ft. (SPACING)	D	E	WEIGHT
85	14 x 3/4"	14 x 1"	17'	14 x 2"	51'	32 x 1/2"	21.25	2	-	34 @ 6"	9"	14,144 lbs

STEEL D.L. CAMBER - in					TOTAL D.L. CAMBER - in				
1	2	3	4	5	1	2	3	4	5
0.251"	0.469"	0.636"	0.742"	0.778"	1.803"	3.358"	4.538"	5.288"	5.545"

Design Summary

eSPAN140 Results

• Typical Girder and Bridge Details

Girder Elevation

• Typical Girder and Bridge Details

Bridge Section

eSPAN140 Results

• Typical Girder and Bridge Details

Deck Information

Physical and Online Resources

- Steel Bridge Design References
 - Steel Bridge Design Handbook
 - AASHTO/NSBA Collaboration Standards
 - Modern Steel Construction

WORLD STEEL BRIDGE SYMPOSIUM

NASCC: THE **STEEL** CONFERENCE Annual Stability Conference Technology in Steel Construction Conference

Metro Toronto Convention Centre March 26–29, 2014

National Steel Bridge Alliance

- Bill McEleney
 - 401.943.5660
 - mceleney@steelbridges.org
- High Steel
 - www.highsteel.com
- National Steel Bridge Alliance
 - www.steelbridges.org
- *e*SPAN140
 - www.espan140.com
- Modern Steel Construction Magazine
 - www.modernsteel.com

